Low-power inversion recovery MRI preserves brain tissue contrast for patients with Parkinson disease with deep brain stimulators.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Fast spin-echo short τ inversion recovery sequences have been very useful for MR imaging-guided deep brain stimulation procedures in Parkinson disease. However, high-quality fast spin-echo imaging deposits significant heat, exceeding FDA-approved limits when patients already have undergone deep brain stimulation and need a second one or a routine brain MR imaging for neurologic indications. We have developed a STIR sequence with an ultra-low specific absorption rate that meets hardware limitations and produces adequate tissue contrast in cortical and subcortical brain tissues for deep brain stimulation recipients. MATERIALS AND METHODS Thirteen patients with medically refractory Parkinson disease who qualified for deep brain stimulation were imaged at 1.5T with a fast spin-echo short τ inversion recovery sequence modified to meet conditional MR imaging hardware and specific absorption rate restrictions. Tissue contrast-to-noise ratios and implant localization were objectively and subjectively compared by 2 neuroradiologists, and image quality for surgical planning was assessed by a neurosurgeon for high and low specific absorption rate images. RESULTS The mean contrast-to-noise ratio for cerebral tissues without including the contrast-to-noise ratio for ventricular fluid was 35 and 31 for high and low specific absorption rate images. Subjective ratings for low specific absorption rate tissue contrast in 77% of patients were identical to (and in a few cases higher than) those of high specific absorption rate contrast, while the neurosurgical coordinates for fusing the stereotactic atlas with low specific absorption rate MR imaging were equivalent to those of the high specific absorption rate for 69% of patients. CONCLUSIONS Patients with Parkinson disease who have already had a deep brain stimulation face a risk of neural injury if routine, high specific absorption rate MR imaging is performed. Our modified fast spin-echo short τ inversion recovery sequence conforms to very conservative radiofrequency safety limits, while it maintains high tissue contrast for presurgical planning, postsurgical assessment, and radiologic evaluations with greater confidence for radiofrequency safety.
منابع مشابه
Low Power MRI Techniques for Neurosurgical Planning and Post-surgical Assessment of Deep Brain Stimulators in Patients with Medically Refractory Parkinson’s Disease or Dystonia
Medically refractory Parkinson's or dystonia conditions are often treated with deep brain stimulation (DBS) that are managed with the help of very restricted MRI due to safety concerns. The resulting MR images are often suboptimal but are still considered valuableto assess post-surgical complications as well as electrode placement accuracy. Absorbed radiofrequency power near the DBS electrodes ...
متن کاملComparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملDiagnostic Performance and Safety of Positron Emission Tomography Using 18F-Fluciclovine in Patients with Clinically Suspected High- or Low-grade Gliomas: A Multicenter Phase IIb Trial
Objective(s): The study objective was to assess the diagnostic performance of positron emission tomography (PET) for gliomas using the novel tracer 18F-fluciclovine (anti-[18F]FACBC) and to evaluate the safety of this tracer in patients with clinically suspected gliomas.Methods: Anti-[18F]FACBC was administered to 40 patients with clinically suspected high- or low-grade gliomas, followed by PET...
متن کاملUtilizing Fast Spin Echo MRI to Reduce Image Artifacts and Improve Implant/Tissue Interface Detection in Refractory Parkinson's Patients with Deep Brain Stimulators
Introduction. In medically refractory Parkinson's disease (PD) deep-brain stimulation (DBS) is an effective therapeutic tool. Postimplantation MRI is important in assessing tissue damage and DBS lead placement accuracy. We wanted to identify which MRI sequence can detect DBS leads with smallest artifactual signal void, allowing better tissue/electrode edge conspicuity. Methods. Using an IRB app...
متن کاملAnatomical situation of the subthalamic nucleus (STN) from midcommissural point (MCP) in Parkinson\'s disease patients underwent deep brain stimulation (DBS): an MRI targeting study
Abstract Introduction: It is demonstrated that the degree of clinical improvement in Parkinson's disease (PD) achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. In addition, individual variability in the situation of subthalamic nucleus (STN) is responsible for spatial inter-individual fluctuations of the real patient's target. Objecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 35 7 شماره
صفحات -
تاریخ انتشار 2014